
Preprint ANL/MCS-P864-1200

ON USING THE ELASTIC MODE IN NONLINEAR
PROGRAMMING APPROACHES TO MATHEMATICAL

PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
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Abstract. We investigate the possibility of solving mathematical programs with complemen-
tarity constraints (MPCCs) using algorithms and procedures of smooth nonlinear programming.
Although MPCCs do not satisfy a constraint qualification, we establish sufficient conditions for their
Lagrange multiplier set to be nonempty. MPCCs that have nonempty Lagrange multiplier sets and
that satisfy the quadratic growth condition can be approached by the elastic mode with a bounded
penalty parameter. In this context, the elastic mode transforms MPCC into a nonlinear program
with additional variables that has an isolated stationary point and local minimum at the solution
of the original problem, which in turn makes it approachable by sequential quadratic programming
algorithms. One such algorithm is shown to achieve local linear convergence once the problem is re-
laxed. Under stronger conditions, we also prove superlinear convergence to the solution of an MPCC
using an adaptive elastic mode approach for a sequential quadratic programming algorithm recently
analyzed in an MPCC context by Fletcher and al. [18]. Our assumptions are more general since we
do not use a critical assumption from that reference. In addition, we show that the elastic parameter
update rule will not interfere locally with the super linear convergence once the penalty parameter
is appropriately chosen.
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1. Introduction. Complementarity constraints can be used to model numerous
economics or engineering applications [30, 36]. Solving optimization problems with
complementarity constraints may prove difficult for classical nonlinear optimization,
however, given that, at a solution x∗, such problems cannot satisfy a constraint qual-
ification [30, Chapter 3]. As a result, algorithms based on the linearization of the
feasible set, such as sequential quadratic programming (SQP) algorithms, may fail
because feasibility of the linearization can no longer be guaranteed in a neighborhood
of the solution [30].

Several methods have been recently proposed to accommodate such problems.
Nonsmooth and disjunctive programming approaches [31, 30, 36] can be used to suc-
cessfully solve MPCC. However, for certain problems they may take a number of
steps that is exponential in the size of the problem. For special cases, such that linear
data functions, or bi-level optimization, other succesfull approaches have been defined
[22, 30].

In this work we investigate an elastic mode SQP approach for MPCC. The elastic
mode is a standard technique of approaching infeasible subproblems by relaxing the
constraints and introducing a differentiable penalty term in the objective function
[24].

Here we use the framework from [40] to determine sufficient conditions for MPCCs
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to have nonempty Lagrange multiplier sets. As in [40], the first- and second-order
optimality properties of an MPCC are compared with the similar properties of two
nonlinear programs that involve no complementarity constraints.

Note that the elastic mode formulation is different from regularization approaches
[25, 30, 41, 28] (though the latter reference introduces an elastic mode relaxation, but
not with respect to all nonlinear constraints, and, in particular, not with respect to
the complementarity constraints). The regularization approaches create a family of
nonlinear programs that are regular (in the sense that they satisfy a constraint quali-
fication at the solution) for the interior of the domain of the regularization parameter.
However, the solution of the regularized roblems is different from the one of the origi-
nal MPCC for any value of the parameter in the interior of the domain. The solution
of the MPCC is obtained in the limit of the regularization parameter going towards
the boundary of its domain. By contrast, under certain conditions to be developed in
this work, the elastic mode formulation transforms the original MPCC into a regular
nonlinear program with the same solution as the MPCC.

We also note that SQP approaches have been applied before to MPCC, in con-
nection to regularization methods [21]. However, this is the first work that analyzes in
detail issues connected to applying an elastic mode SQP approach to solving MPCC.

The paper is structured as follows.
• In Section 1 we review the relevant nonlinear programming concepts.
• In Section 2 we discuss sufficient conditions for MPCC to have a nonempty

Lagrange multiplier set, in spite of not satisfying a constraint qualification at
any point.

• In Section 3 we show that the elastic mode applied to an instance of the
MPCC class will retrieve a local solution of the problem for a finite value
of the penalty parameter, a point which is supported by several numerical
examples.

• In Section 4 we prove that an adaptive elastic mode approach built around
an algorithm recently analyzed in Fletcher and al. [18] in the MPCC context
will result in super linear convergence near the solution of an MPCC under
assumptions weaker than in [18]. Specifically, here we do not assume that the
iterates are either feasible or satisfy the complementarity constraints for the
unrelaxed problem. If the sequence produced by the algorithm is assumed
to converge, we show that superlinear convergence follows from even weaker
assumptions about the signs of the relevant multipliers. In addition, we show
that the elastic parameter update rule will not affect locally the super linear
convergence once the penalty parameter is appropriately chosen.

1.1. Optimality Conditions for General Nonlinear Programming. We
review the optimality conditions for a general nonlinear program

min
x

f̃(x) subject to g̃(x) ≤ 0, h̃(x) = 0.(1.1)

Here g̃ : Rn → Rm, h̃ : Rn → Rr. We assume that f̃ , g̃, and h̃ are twice continuously
differentiable.

We call x a stationary point of (1.1) if the Fritz-John condition holds: There exist
multipliers 0 6= λ̃ = (λ̃0, λ̃1, . . . , λ̃m+r) ∈ Rm+r+1, such that

∇xL(x, λ̃) = 0, h̃(x) = 0; λ̃i ≥ 0, g̃i(x) ≤ 0, for i = 1, 2, . . . ,m;
m∑

i=1

λ̃ig̃i(x) = 0.

(1.2)
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Here L is the Lagrangian function

L(x, λ̃) = λ̃0f̃(x) +
m∑

i=1

λ̃ig̃i(x) +
r∑

j=1

λ̃m+j h̃j(x).(1.3)

A local solution x∗ of (1.1) is a stationary point [37]. We introduce the sets of
generalized Lagrange multipliers

Λg(x) =
{

0 6= λ̃ ∈ Rm+r+1 | λ̃ satisfies (1.2) at x
}
,(1.4)

Λg
1(x) =

{
λ̃ ∈ Λg(x) | λ̃0 = 1

}
.(1.5)

The set of active inequality constraints at a stationary point x is

Ã(x) = {i ∈ {1, 2, . . . ,m} | g̃i(x) = 0} .(1.6)

The set of inactive inequality constraints at x is the complement of Ã(x):

Ãc(x) = {1, 2, . . . ,m} – Ã(x).(1.7)

With this notation, the complementarity condition from (1.2),
∑m

i=1 λ̃igi(x) = 0,
becomes λ̃Ãc(x) = 0.

If certain regularity conditions hold at a stationary point x (discussed below),
there exist µ̃ = (µ̃1, µ̃2, . . . , µ̃m+r) ∈ Rm+r that satisfy the Karush-Kuhn-Tucker
(KKT) conditions [3, 4, 15]:

∇xf̃(x) +
∑m

i=1 µ̃i∇xg̃i(x) +
∑r

j=1 µ̃m+j∇xh̃j(x) = 0, h̃(x) = 0;
µ̃i ≥ 0, g̃i(x) ≤ 0, µ̃ig̃i(x) = 0, for i = 1, 2, . . . ,m.

(1.8)

In this case, µ̃ are referred to as the Lagrange multipliers, and x is called a Karush-
Kuhn-Tucker (KKT) point. We denote the set of Lagrange multipliers by

Λ(x) =
{
µ̃ ∈ Rm+r | µ̃ satisfies (1.8) at x

}
.(1.9)

A simple inspection of the definitions of Λ(x) and Λg
1(x) reveals that:

µ̃ ∈ Λ(x) ⇔ (1, µ̃) ∈ Λg
1(x).

Also, because of the first-order homogeneity of the conditions (1.2), and from (1.8),
it immediately follows that

Λ(x) 6= ∅ ⇔ Λg
1(x) 6= ∅ ⇔ ∃λ̃ ∈ Λg(x), such that λ̃0 6= 0.(1.10)

The regularity condition, or constraint qualification, ensures that a linear approx-
imation of the feasible set in the neighborhood of a stationary point x captures the
geometry of the feasible set. The regularity condition that we will use at times at
a stationary point x is the Mangasarian-Fromovitz constraint qualification (MFCQ)
[33, 32]:

(MFCQ)
1. ∇xh̃j(x), j = 1, 2, . . . , r, are linearly independent and
2. ∃p 6= 0 such that ∇xh̃j(x)T p = 0, j = 1, 2, . . . , r

and ∇xg̃i(x)T p < 0, i ∈ Ã(x).
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It is well known [23] that (MFCQ) is equivalent to the fact that the set Λ(x) of
Lagrange multipliers of (1.1) is nonempty and bounded at a stationary point x of
(1.1). Note that Λ(x) is certainly polyhedral in any case.

Another condition that we will use on occasion is the strict Mangasarian-
Fromovitz constraint qualification (SMFCQ). We say that this condition is satisfied
by (1.1) at a KKT point x if

(SMFCQ)
1) (MFCQ) is satisfied at x and

2) the Lagrange multiplier set Λ(x) contains exactly one element.

The critical cone at a stationary point x is [14, 42]

C(x) =
{
u ∈ Rn | ∇xh̃j(x)Tu = 0, j = 1, 2, . . . , r,

∇xg̃i(x)Tu ≤ 0, i ∈ Ã(x); ∇xf̃(x)Tu ≤ 0
}
.

(1.11)

We now review the conditions for a point x∗ to be a solution of (1.1). The
second-order necessary conditions for x∗ to be a local minimum are that Λg(x∗) 6= ∅
and [26]

∀u ∈ C(x∗), ∃λ̃∗ ∈ Λg(x∗), such that uT∇2
xxL(x∗, λ̃∗)u ≥ 0.(1.12)

The second-order sufficient conditions for x∗ to be a local minimum are that
Λg(x∗) 6= ∅ and [26]

∀u ∈ C(x∗), u 6= 0, ∃λ̃∗ ∈ Λg(x∗), such that uT∇2
xxL(x∗, λ̃∗)u > 0.(1.13)

Stronger second-order conditions are Robinson’s conditions. These conditions are
that, at a solution x∗, the following condition holds:

∀u ∈ C(x∗), u 6= 0, ∀λ̃∗ ∈ Λg(x∗), we have that uT∇2
xxL(x∗, λ̃∗)u > 0.

In a fact we will invoke Robinson’s conditions for the case where Λg
1(x

∗) 6= ∅. In the
latter situation, Robinson’s conditions are equivalent to:

(RSOSC) ∀u ∈ C(x∗), u 6= 0, ∀λ̃∗ ∈ Λg
1(x

∗), we have that uT∇2
xxL(x∗, λ̃∗)u > 0.

1.2. Notation. For a mapping q : Rn → Rl, we define:

q+(x) =


max{q1(x), 0}
max{q2(x), 0}

...
max{ql(x), 0}

 and ifq−(x) =


max{−q1(x), 0}
max{−q2(x), 0}

...
max{−ql(x), 0}

 .

With this definition, it immediately follows that q(x) = q+(x) − q−(x) and that
|qi(x)| = q+i (x) + q−i (x), i = 1, 2, . . . , l.

In this work we use the convention that ∇xq(x) is a matrix with l rows and n
columns. This will allow us to write first order Taylor expansion of q(x) at some point
x̂ as q(x̂) +∇xq(x̂) (x− x̂), without the need to use a transpose sign. In particular,
if q : Rn → R, ∇xq(x) is a row vector.
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We will also use the Landau notation. We say that a is of order b which we denote
by a = O(b), if there exists c such that a ≤ cb for all a and b sufficiently small. We
denote by a = Ω(b) quantities a and b that satisfy a = O(b) and b = O(a).

We will use certain symbols twice, to denote related data of different programs.
However, to avoid confusion, we will use a ˜ sign for the data of the general non-
linear programming problem (1.1), whereas the same objects associated with the
(MPCC) problem (to be defined later) are denoted it without the˜sign. For instance,
f̃ , g̃, h̃, denote, respectively, the objective, the inequality constraint, and the equality
constraints of the general nonlinear programming problem, whereas f, g, h denote, re-
spectively, the objective, the inequality constraints, and the equality constraints of the
MPCC problem. The MPCC problem, however, has, in addition, complementarity
constraints.

In the literature problems of the type we treat here are also called mathematical
programs with equilibrium constraints (MPEC), an acronym that we may use when
we invoke optimality conditions from the respective references.

We denote the L∞ nondifferentiable penalty function by

P̃∞(x) = max
{
g̃1(x), g̃2(x), ..., g̃m(x),

∣∣∣h̃1(x)
∣∣∣ , ∣∣∣h̃2(x)

∣∣∣ , . . . , ∣∣∣h̃r(x)
∣∣∣ , 0} .(1.14)

We also define the L1 penalty function as

P̃1(x) =
m∑

i=1

g̃+
i (x) +

r∑
j=1

∣∣∣h̃j(x)
∣∣∣ .(1.15)

It is immediate that:

0 ≤ P̃∞(x) ≤ P̃1(x) ≤ (m+ r)P̃∞(x).

An obvious consequence of (1.15) and (1.14) is that x is a feasible point of (1.1) if
and only if P̃1(x) = P̃∞(x) = 0.

We say that the nonlinear program (1.1) satisfies the quadratic growth condition
with a parameter σ̃ at x∗ if

max
{
f̃(x)− f̃(x∗), P̃∞(x)

}
≥ σ̃ ||x− x∗||2(1.16)

holds for some σ̃ > 0 and all x in a neighborhood of x∗. The quadratic growth
condition is equivalent to the second-order sufficient conditions (1.13), [6, 7, 26, 27, 42]
and it is the weakest possible second-order condition.

For the case in which (MFCQ) holds at a solution x∗ of (1.1), the quadratic
growth condition at x∗ is equivalent to [6]

f̃(x)− f̃(x∗) ≥ σ̃f̃ ||x− x∗||2(1.17)

for some σ̃f̃ > 0 and all x feasible in a neighborhood of x∗.

1.3. Exact Penalty Conditions for Degenerate Nonlinear Program-
ming. We now assume that at a solution x∗ of the nonlinear program (1.1) the
following conditions hold:

1. The Lagrange multiplier set at x∗, Λ(x∗), is not empty.
2. The quadratic growth condition (1.16) is satisfied.
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Then there exists a neighborhood V(x∗), some penalty parameters c̃1 ≥ 0, c̃∞ ≥ 0
and some growth parameters σ1 > 0 and σ∞ > 0 such that [7, Theorem 3.113]

∀x ∈ V(x∗), ψ1(x) = f̃(x) + c̃1P̃1(x) ≥ f̃(x∗) + σ1 ||x− x∗||2

= ψ1(x∗) + σ1 ||x− x∗||2 ,(1.18)

∀x ∈ V(x∗), ψ∞(x) = f̃(x) + c̃∞P̃∞(x) ≥ f̃(x∗) + σ∞ ||x− x∗||2

= ψ∞(x∗) + σ∞ ||x− x∗||2 .(1.19)

Therefore, x∗ becomes an unconstrained strict local minimum for the nondifferentiable
functions ψ1(x) and ψ∞(x). Such functions are called nondifferentiable exact merit
functions for the nonlinear program (1.1) [3, 4, 15]. If (1.18) and (1.19) are satisfied
then we say that the functions ψ1(x) and ψ∞(x) satisfy a quadratic growth condition
near x∗.

1.4. Formulation of Mathematical Programs with Complementarity
Constraints. We use notation similar to the one in [40] to define a mathematical
program with complementarity constraints (MPCC).

(MPCC) minx f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

Fk,1(x) ≤ 0, k = 1, 2, . . . , nc

Fk,2(x) ≤ 0, k = 1, 2, . . . , nc

Fk,1(x)Fk,2(x) ≤ 0, k = 1, 2, . . . , nc.

In this work we assume that the data of (MPCC) (f(x), h(x), g(x) and Fk,i(x), for
k = 1, 2, . . . , nc, and i = 1, 2) are twice continuously differentiable.

For a given k, the constraints Fk,1(x) ≤ 0, Fk,2(x) ≤ 0 imply that Fk,1(x)Fk,2(x)
≤ 0 is equivalent to Fk,1(x)Fk,2(x) = 0. The constraints Fk,1(x)Fk,2(x) ≤ 0 are thus
called complementarity constraints and are active at any feasible point of (MPCC).
Therefore (MPCC) included a particular choice of representing the complementarity
constraints Fk1(x) ⊥ Fk2(x) for k = 1, 2, . . . , nc as constraints of a smooth nonlin-
ear program. We present another one of the several equivalent smooth nonlinear
programming formulations in (2.13).

Since we cannot have Fk,1(x) < 0, Fk,2(x) < 0, and Fk,1(x)Fk,2(x) < 0 simulta-
neously, it follows that (MFCQ) cannot hold at any feasible point x [30, 40].

1.5. MPCC Notation. In this section, which previews our general convergence
results, we use the same notation from [40] to denote certain index sets, because
at some point we invoke a theorem from that reference. Later, in our super linear
convergence results we will use notation from [18] to denote similar index sets, because
we will use results from the latter reference.

If i is one of 1, 2 we define i = 2 − i + 1. Therefore i = 1 ⇒ i = 2, and i = 2 ⇒
i = 1. The complementarity constraints can thus be written as Fk,i(x)Fk,i(x) ≤ 0,
k = 1, 2, . . . , nc. We use the notation

F (x) = (F11(x), F12(x), F21(x), F22(x), . . . , Fnc1(x), Fnc2(x))
T
.(1.20)

The active set of the inequality constraints gi(x) ≤ 0, 1 ≤ i ≤ m, at a feasible point
x is

A(x) = {i ∈ {1, 2, . . . , ni} | gi(x) = 0} .(1.21)
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We use the following notation:

I(x) =
{

(k, i) ∈ {1, 2, . . . , nc} × {1, 2} | Fk,i(x) < 0
}
,(1.22)

I(x) = {(k, i) ∈ {1, 2, . . . , nc} × {1, 2} | Fk,i(x) < 0} ,(1.23)

D(x) =
{

(k, i) ∈ {1, 2, . . . , nc} × {1, 2} | Fk,i(x) = Fk,i(x) = 0
}
,(1.24)

Ic(x) = {1, 2, . . . , nc} × {1, 2} − I(x),(1.25)
K(x) = {k ∈ {1, 2, . . . , nc} | (k, 1) ∈ I(x) or (k, 2) ∈ I(x)} ,(1.26)
K(x) = {k ∈ {1, 2, . . . , nc} | Fk,1(x) = Fk,2(x) = 0} = {1, 2, . . . , nc} − K(x).(1.27)

There are two cases for the constraints involved in the complementarity con-
straints at a feasible point x.

1. Fk,1(x)+Fk,2(x) < 0. In this case there is an i(k) ∈ {1, 2} such that Fk,i(k) = 0
and Fk,i(k) < 0. Therefore, with our notation k ∈ K(x), (k, i(k)) ∈ I(x)
and (k, i(k)) ∈ I(x). We call Fk,1(x), Fk,2(x) a nondegenerate (or strictly
complementary) pair. In the rest of the paper i(k) and i(k) will have the
meaning defined in this paragraph, whenever k ∈ K.

2. Fk,1(x) + Fk,2(x) = 0, or Fk,1(x) = Fk,2(x) = 0. In this case k ∈ K(x),
(k, 1) ∈ D(x) and (k, 2) ∈ D(x). We call Fk,1(x), Fk,2(x) a degenerate pair.

Therefore I(x) and Ī(x) contain the indices of the active constraints at which strict
complementarity occurs, whereas D(x) contains the indices of the constraints that are
degenerate at x from the point of view of complementarity. The set K(x) represents
the indices k at which strict complementarity occurs and K(x) the indices k at which
complementarity degeneracy occurs.

Since we are interested in the behavior of (MPCC) at a solution point x∗, we
may avoid the dependence of these index sets on x. Therefore we denote I = I(x∗),
D = D(x∗), K = K(x∗), and A = A(x∗).

For a set of pairs J ⊂ {1, 2, . . . , nc} × {1, 2} we denote by FJ a map whose
components are Fk,i with (k, i) ∈ J .

1.6. Associated Nonlinear Programs at x∗. In this section we associate two
nonlinear programs to (MPCC). This will help with characterizing the stationarity
conditions for (MPCC). The notation is from [40].

At x∗ we associate the relaxed nonlinear program (RNLP) to (MPCC).

(RNLP) minx f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

FD(x) ≤ 0,
FI(x) = 0.

As it can be seen, (RNLP) is obtained from (MPCC) by dropping the elements from
F (x) that are inactive at x∗, as well as the complementarity constraints, but enforcing
the complements of inactive constraints as equality constraints.

Note that (RNLP) typically includes the constraints FĪ(x) ≤ 0 in order to have
a tighter relaxation of the feasible set of (MPCC). The nonlinear program (RNLP),
however, is used only for local analysis near a solution x∗. Since the constraints
FĪ(x) ≤ 0 are not active in a neighborhood of x∗, we do not consider them in the
analysis.
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We also associate at x∗ the tightened nonlinear program (TNLP), in which all
the complementarity constraints in (MPCC) are dropped and all active constraints
at x∗ connected to complementarity constraints are replaced by equality constraints.

(TNLP) minx f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

FD(x) = 0,
FI(x) = 0.

We immediately see that, near x∗, (TNLP) is a more constrained problem than
(MPCC), which in turn is more constrained than (RNLP), and all three programs
have the same objective function. As a result, if x∗ is a local solution of (RNLP),
then it must be a local solution of (MPCC). Also, if x∗ is a local solution of (MPCC),
then it will be a local solution of (TNLP). None of the reverse implications hold in
general for either local solutions or stationary points.

However, if (TNLP) satisfies (SMFCQ) at a solution x∗ of (MPCC), then x∗ is a
Karush-Kuhn-Tucker point of (TNLP) and (RNLP) [40].

2. The Lagrange Multiplier Set of (MPCC). In this section we analyze the
relationship between the relevant mathematical objects of (MPCC) and (RNLP) at a
solution x∗. The (RNLP) formulation does not immediately violate (MFCQ), the way
(MPCC) does. By establishing a correspondence between the Lagrange multiplier
sets of (RNLP) and (MPCC) we ensure that, under certain conditions, (MPCC)
has a nonempty Lagrange multiplier set, although it does not satisfy a constraint
qualification.

2.1. Critical Cones. In this section we compare the critical cones of (MPCC)
and (RNLP). The active sets play a structural part in the definition of the critical
cones. We have that:

∇x (Fk,1Fk,2) (x∗) = Fk,1(x∗)∇xFk,2(x∗) + Fk,2(x∗)∇xFk,1(x∗).

Using the definition (1.11) we get that the critical cone of (MPCC) is

CMPCC = {u ∈ Rn | ∇xf(x∗)u ≤ 0,
∇xgi(x∗)u ≤ 0, i ∈ A
∇xhj(x∗)u = 0, j ∈ 1, 2, . . . , ne

∇xFk,1(x∗)u ≤ 0, k ∈ K
∇xFk,2(x∗)u ≤ 0, k ∈ K
∇xFk,i(k)(x∗)u ≤ 0, (k, i(k)) ∈ I
Fk,i(k)(x

∗)∇xFk,i(k)(x∗)u ≤ 0, (k, i(k)) ∈ I} .

(2.1)

Note that the definition that we use here of the critical cone corresponds to the non-
linear programming interpretation of (MPCC). There exists another, combinatorial,
definition of the critical cone, that is used in connection to disjunctive approaches [30,
Equation 5.3.(2)].

We use (1.11) again to determine the critical cone of the relaxed nonlinear pro-
gram. It is immediate from the definition of the index sets I,K, and D that all
constraints involving components of F (x) are active at x∗ for (RNLP). It thus follows
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that the critical cone of (RNLP) is

CRNLP = {u ∈ Rn | ∇xf(x∗)u ≤ 0,
∇xgi(x∗)u ≤ 0, i ∈ A
∇xhj(x∗)u = 0, j ∈ 1, 2, . . . , ne

∇xFk,1(x∗)u ≤ 0, k ∈ K
∇xFk,2(x∗)u ≤ 0, k ∈ K
∇xFk,i(k)(x∗)u = 0, (k, i(k)) ∈ I} .

(2.2)

Lemma 2.1. CMPCC = CRNLP.
Proof The conclusion is immediate, by noting that all the constraints involving

the critical cones are the same with the exception of the ones involving indices k for
which (k, i(k)) ∈ I. For these k, from the definition (1.22) of the index sets it follows
that Fk,i(k)(x

∗) < 0. We therefore have that:

∇xFk,i(k)(x∗)u ≤ 0 and Fk,i(k)(x
∗)∇xFk,i(k)(x∗)u ≤ 0 ⇔

∇xFk,i(k)(x∗)u ≤ 0 and ∇xFk,i(k)(x∗)u ≥ 0 ⇔
∇xFk,i(k)(x∗)u = 0.

Since the remaining constraints of (RNLP) and (MPCC) are the same this equivalence
proves the claim. �

2.2. Generalized Lagrange Multipliers. The set of generalized Lagrange
multipliers of (MPCC) at x∗ is a set of multiples

0 6= (α, ν, π, µ, η) ∈ R×Rni ×Rne ×R2nc ×Rnc

that satisfies the Fritz-John conditions (1.2). Since µ are the multipliers corresponding
to the components of F (x), we will index them by elements in (1, 2, . . . , nc) × (1, 2).
The Fritz-John conditions for (MPCC) at x∗ are that x∗ is feasible for (MPCC) and
that

α∇xf(x∗) +
ni∑

i=1

νi∇xgi(x∗) +
ne∑

j=1

πj∇xhj(x∗) +(2.3)

nc∑
k=1

[
µk,1∇xFk,1(x∗) + µk,2∇xFk,2(x∗) + ηk∇x

(
Fk,1Fk,2

)
(x∗)

]
= 0

Fk,i(x∗) ≤ 0, µk,i ≥ 0, µk,iFk,i(x∗) = 0, k = 1, 2, . . . , nc,
i = 1, 2

gi(x∗) ≤ 0, νi ≥ 0, νigi(x∗) = 0, i = 1, 2, . . . , ni

Fk,1(x∗)Fk,2(x∗) ≤ 0, ηk ≥ 0, ηkFk,1(x∗)Fk,2(x∗) = 0, k = 1, 2, . . . , nc.

(2.4)

From our definition of the index sets it follows that FI(x
∗) < 0 and gAc(x∗) < 0.

Therefore, from the complementarity conditions (2.4), it follows that µI = 0 and
νAc = 0.

We can also determine the relations satisfied by the generalized Lagrange multi-
pliers of (RNLP). As discussed above, the index sets that define (RNLP) have been
chosen such that all constraints involving components of F (x) are active. Therefore
the generalized Lagrange multipliers are:

0 6= (α̃, ν̃, π̃, µ̃, η̃) ∈ R×Rni ×Rne ×RnD ×RnI
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that satisfy the Fritz-John conditions:

α̃∇xf(x∗) +
ni∑

i=1

ν̃i∇xgi(x∗) +
ne∑

j=1

π̃j∇xhj(x∗) +(2.5)

∑
k∈K

[µ̃k,1∇xFk,1(x∗) + µ̃k,2∇xFk,2(x∗)] +
∑
k∈K

η̃k,i(k)∇xFk,i(k)(x∗) = 0

gi(x∗) ≤ 0, ν̃i ≥ 0, ν̃igi(x∗) = 0, i = 1, 2, . . . , ni

µ̃k,1 ≥ 0, µ̃k,2 ≥ 0, k ∈ K.(2.6)

Here µ̃ is a vector that is indexed by elements of D, and η̃ is indexed by elements of
I.

2.3. Relations between the generalized Lagrange Multiplier Sets of
(MPCC) and (RNLP). Take λ̃ = (α̃, ν̃, π̃, µ̃, η̃) ∈ Λg

RNLP. We construct from
the generalized multiplier λ̃ of (RNLP) a generalized multiplier λ◦ of (MPCC). We
define the following types of components of λ◦.

1. Components that correspond to the objective function or the inequality con-
straints gi(x) ≤ 0 and equality constraints hj(x) = 0

α◦ = α̃; ν◦ = ν̃; π◦ = π̃.(2.7)

2. Components connected to the pairwise degenerate constraints. For these we
have k ∈ K and (k, 1), (k, 2) ∈ D or Fk,1(x∗) = Fk,2(x∗) = 0. We define

µ◦k,i = µ̃k,i, (k, i) ∈ D; η◦k = 0, k ∈ K.(2.8)

We have that:

∇x

(
Fk,1Fk,2

)
(x∗) = 0,

and therefore

µ̃k,1∇xFk,1(x∗) + µ̃k,2∇xFk,2(x∗) = µ◦k,1∇xFk,1(x∗) +
µ◦k,2∇xFk,2(x∗) + η◦k∇x (Fk,1Fk,2) (x∗).(2.9)

3. Components connected to pairwise strictly complementary constraints. In this
case we have k ∈ K, (k, i(k)) ∈ I, and (k, i(k)) ∈ I. Therefore Fk,i(k)(x

∗) < 0,
Fk,i(k)(x∗) = 0, and we thus define the multipliers

µ◦k,i(k) = max
{
η̃k,i(k), 0

}
, (k, i(k)) ∈ I

µ◦
k,i(k)

= 0, (k, i(k)) ∈ I
η◦k = 1

Fk,̄i(k)(x
∗) min

{
η̃k,i(k), 0

}
, k ∈ K.

(2.10)

It is immediate from these definitions that µ◦k,i(k) ≥ 0 and η◦k ≥ 0. Since, for fixed k,
η̃k,i(k) is the only multiplier of (RNLP) involved in definition (2.10), we obtain that

η̃k,i(k)∇xFk,i(k)(x∗) =
[
max

{
η̃k,i(k), 0

}
+ min

{
η̃k,i(k), 0

}]
∇xFk,i(k)(x∗)

= µ◦k,i(k)∇xFk,i(k)(x∗) + η◦kFk,i(k)(x
∗)∇xFk,i(k)(x∗) =

µ◦k,i(k)∇xFk,i(k)(x∗) + µ◦
k,i(k)

∇xFk,i(k)(x
∗) + η◦k∇x

(
Fk,i(k)Fk,i(k)

)
(x∗).

(2.11)
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After we compare the terms that, following (2.9) and (2.11), are equal in (2.5) and
(2.3), we get that λ◦ = (α◦, ν◦, π◦, µ◦, η◦) satisfies (2.3) as well as (2.4). By tracing
the definition of λ◦ we also have that λ̃ 6= 0 ⇒ λ◦ 6= 0. Therefore λ◦ is a generalized
Lagrange multiplier of (MPCC) or

λ◦ = (α◦, ν◦, π◦, µ◦, η◦) ∈ Λg

MPCC,(2.12)

where α◦ = α̃ from (2.7).
Theorem 2.2. The set of Lagrange multipliers of (RNLP) is not empty if and

only if the set of Lagrange multipliers of (MPCC) is not empty.
Proof If the Lagrange multiplier set of (RNLP) is not empty, we can choose

λ̃ = (1, ν̃, π̃, µ̃, η̃) ∈ Λg

1, RNLP. From (2.12) it follows that λ◦ = (1, ν◦, π◦, µ◦, η◦) ∈
Λg

1,MPCC is a generalized multiplier of (MPCC). From (1.10) it follows that the La-
grange multiplier set of (MPCC) is not empty. The proof of the reverse statement
follows in a similar manner and is omitted. �

One one hand, in our work, we are interested in KKT points of (MPCC). On the
other, existence of Lagrange multipliers for (RNLP) at x∗ amounts to what is called
strong stationarity in the literature on MPCCs [40]. Therefore our previous result
says that x∗ is stationary for (MPCC) if and only if it is strongly stationary.

Corollary 2.3. Assume that (TNLP) satisfies (SMFCQ) at a solution x∗ of
(MPCC), i.e.

1. ∇xFD(x∗), ∇xFI(x∗), and ∇xh(x∗) are linearly independent.
2. There exists p 6= 0 such that ∇xFD(x∗)p = 0, ∇xFI(x∗)p = 0, ∇xh(x∗)p = 0,
∇xgi(x∗)p < 0, for i ∈ A(x∗).

3. The Lagrange multiplier set of (TNLP) at x∗ has a unique element.
Then the Lagrange multiplier set of (MPCC) is not empty.

Proof From [40, Theorem 2], since (TNLP) satisfies (SMFCQ) at x∗, the La-
grange multiplier set of (RNLP) is not empty. Following Theorem 2.2, we obtain that
the Lagrange multiplier set of (MPCC) is not empty, which proves the claim. �

The proof of the Corollary 2.3 also follows immediately from [40, Theorem 4]
after using the observation that, when (SMFCQ) holds, x∗ is a B-stationary point of
(MPCC), [40, Section 2.1]. The conclusion of Corollary 2.3 does not hold in absence
of (SMFCQ) [40, Example 3].

2.4. An alternative formulation. We also investigate the following equivalent
formulation of (MPCC), where the complementarity constraints have been replaced
by one constraint:

minx f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

Fk,1(x) ≤ 0, k = 1, 2, . . . , nc

Fk,2(x) ≤ 0, k = 1, 2, . . . , nc∑nc

k=1 Fk,1(x)Fk,2(x) ≤ 0.

(2.13)

At a feasible point of the above program, we must have that
∑nc

k=1 Fk,1(x)Fk,2(x) = 0
and the equivalence between (2.13) and (MPCC) follows immediately. This formula-
tion is of interest in computations because it has less constraints than (MPCC).

Lemma 2.4. If the Lagrange multiplier set of (MPCC) is not empty, there exists
a generalized Lagrange multiplier (1, ν, π, µ, η) ∈ Λg

MPCC such that ηk = η1, k =
2, 3, . . . , nc.
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Proof The proof follows from straightforward algebra of the type used in Sub-
section 2.2. �

We now describe the generalized Lagrange multiplier set of the alternative formu-
lation (2.13). We denote mathematical objects connected to (2.13) by the subscript
MPCC1. We write the Fritz-John conditions (1.2) for (2.13) at the point x∗, and we
obtain

α�∇xf(x∗) +
ni∑

i=1

ν�i ∇xgi(x∗) +
ne∑

j=1

π�j∇xhj(x∗) +(2.14)

nc∑
k=1

2∑
i=1

µ�k,i∇xFk,i(x∗) + η�1

nc∑
k=1

∇x

(
Fk,1Fk,2

)
(x∗) = 0

Fk,i(x∗) ≤ 0, µ�k,i ≥ 0, µ�k,iFk,i(x∗) = 0, k = 1, 2, . . . , nc,

i = 1, 2
gi(x∗) ≤ 0, ν�i ≥ 0, ν�i gi(x∗) = 0, i = 1, 2, . . . , ni

(2.15)

and η�1 ≥ 0 ∈ R. Note that from the fact that x∗ is feasible for (2.13) we also
have that

∑nc

k=1 Fk,1(x)Fk,2(x) ≤ 0 and Fki ≤ 0, for k = 1, 2, . . . , nc and i = 1, 2.
Consequently, we have that

∑nc

k=1 Fk,1(x)Fk,2(x) = 0 and thus the complementarity
condition η�1

∑nc

k=1 Fk,1(x)Fk,2(x) = 0 is redundant. We therefore ignore it in the
Fritz-John conditions (2.14–2.15).

A generalized multiplier of (2.13) is thus

λ� = (α�, ν�, π�, µ�, η�1) ∈ Λg
MPCC1 ⊂ R×Rni ×Rne ×R2nc ×R,

where λ� satisfies the Fritz-John conditions (2.14), (2.15).
Theorem 2.5.
(i) The formulation (2.13) has a nonempty Lagrange multiplier set if and only if

(MPCC) has a nonempty Lagrange multiplier set.
(ii) If (MPCC) has a nonempty Lagrange multiplier set and if it satisfies the

quadratic growth condition at x∗, then (2.13) has a nonempty Lagrange mul-
tipliers set and satisfies the quadratic growth condition at x∗.

Proof The proof of part (i) this result is based on Lemma 2.4, in conjunction
with the equations (2.3–2.4) and (2.14–2.15).

The proof of part (ii) follows from part (i), the fact that the quadratic growth
condition holds at x∗, [7, Theorem 3.113] applied to the L1 merit function, and the
fact that the following inequality holds for x in some neighborhood of x∗ and for some
cFF > 0:(

nc∑
k=1

Fk1(x)Fk2(x)

)+

≥
nc∑

k=1

(Fk1(x)Fk2(x))
+ − cFF

(∣∣∣∣F+
1 (x)

∣∣∣∣
1

+
∣∣∣∣F+

2 (x)
∣∣∣∣

1

)
.

�
Theorems 2.2 and 2.5 give sufficient conditions for (MPCC) and (2.13) to have a

nonempty Lagrange multiplier set in spite of the fact that neither satisfy a constraint
qualification at any point in the usual sense of nonlinear programming. In Section
3 these conditions will imply that a relaxed version of either (MPCC) or (2.13) will
have the same solution as (MPCC) and will satisfy (MFCQ), which makes either
approachable by SQP algorithms.
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3. The Elastic Mode. An important class of techniques for solving nonlinear
programs (1.1) is sequential quadratic programming. The main step in an algorithm
of this type is solving the quadratic program

mind ∇xf̃(x)d+ dT W̃d,
subject to g̃i(x) +∇xg̃i(x)d ≤ 0, i = 1, 2, . . . ,m

h̃j(x) +∇xh̃j(x)d = 0, j = 1, 2, . . . , r.
(3.1)

The matrix W̃ can be the Hessian of the Lagrangian (1.1) at (x, λ) [17], where λ is
a suitable approximation of a Lagrange multiplier or a positive definite matrix that
approximates the Hessian of the Lagrangian on a certain subspace [15, 24, 34]. A
trust-region type constraint may be added to (3.1) to enforce good global conver-
gence properties [17]. The solution d of (3.1) is then used in conjunction with a merit
function and/or line search to determine a new iterate. We give here only a brief
description of SQP algorithms, since our interest is solely in showing how the diffi-
culties regarding the potential infeasibility of (3.1) when applied to (MPCC) can be
circumvented. For more details about SQP methods see [15, 17, 24, 34].

If a nonlinear program satisfies (MFCQ) at x∗ then the quadratic program will
be feasible in a neighborhood of x∗. If (MFCQ) does not hold at x∗, however, the
possibility exists that (3.1) is infeasible, no matter how close to x∗ [30, 36, 40]. This
is an issue in the context of this paper because (MPCC) does not satisfy the (MFCQ)
at a solution x∗.

In the case of infeasible subproblems some of the SQP algorithms initiate the
elastic mode [24]. This consists of modifying the nonlinear program (1.1) by relaxing
the constraints and adding a penalty term to the objective function.

When the elastic mode is implemented, only the nonlinear constraints are relaxed
[24]. To represent this situation in our approach, we assume that g̃i(x) for i =
1, 2, . . . , li, and h̃j(x), for j = 1, 2, . . . , le, are linear.

For these constraints, we assume that
[B1] The set Fl is feasible, where

Fl =
{
x
∣∣∣g̃i(x) ≤ 0, i = 1, 2, . . . , li, h̃j(x) = 0, j = 1, 2, . . . , le

}
,

[B2] The preceding representation of Fl is minimal: ∇xh̃j(x) are linearly indepen-
dent, j = 1, 2, . . . , le, and ∃d such that ∇xh̃j(x)d = 0, ∇xg̃i(x)d < 0.

None of these assumptions induces any loss of generality. Indeed, if Fl = ∅,
then the original nonlinear program (1.1) is infeasible. Most software for nonlinear
programming starts with an analysis of the linear constraints and the infeasibility of
the problem, which is the correct outcome when Fl = ∅, is immediately detected.
Clearly, the interesting situation is when Fl is feasible, which is our assumption [B1].

If the set Fl is polyhedral and nonempty, it must have a minimal representation
[43, 11]. In addition, this representation can be computed by solving only one lin-
ear program [20]. The methods we use in this work are of the sequential quadratic
programming type, where all constraints of the nonlinear program are linearized, and
the nonlinear constraints are perhaps relaxed. Since the set Fl is invariant under
linearization, any of its representations will produce the same quadratic program sub-
problems. As long as we do not involve the Lagrange Multipliers of the constraints
defining Fl, that are not invariant to a change in representation, assumption [B2]
does not result in any loss of generality as long as assumption [B1] holds.
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Define c̃∞ > 0, x0, k = 0, σ ∈ (0, 1
2 ), τ ∈ (0, 1), s > 0.

QP Find the solution d = dk of the quadratic program.
minimized

1
2d

T d+∇xf̃(xk)d
subject to h̃(xk) +∇xh̃(xk)d = 0

g̃(xk) +∇xg̃(xk)d ≤ 0
Find the smallest integer m = mk that satisfies

ψ∞(xk + τmsdk)− ψ∞(xk) ≥ στmsdkT

dk.
Define xk+1 = xk + τmksdk, and k = k + 1.
Go to QP.

Table 3.1
The model algorithm

Depending on the type of the relaxation, we can have either an L1 or an L∞
approach. Our results are related to the situation in which the merit functions ψ1(x)
and ψ∞(x) are exact for the nonlinear program (1.1).

Here we consider the case in which the added penalty term is of the L∞ [3] type:

minx,ζ f̃(x) + c∞ζ
subject to g̃i(x) ≤ 0, i = 1, 2, . . . , li,

g̃i(x) ≤ ζ, i = li + 1, . . . ,m,
h̃j(x) = 0, j = 1, 2, . . . , le

−ζ ≤ h̃j(x) ≤ ζ, j = le + 1, . . . , r
ζ ≥ 0.

(3.2)

All the constraints are now inequality constraints. A quadratic program analo-
gous to (3.1) is constructed for (3.2), which, since [B1] and [B2] hold, now satisfies
(MFCQ) at any feasible point. A feasible point of (3.2), can be immediately obtained
by choosing ζ to be sufficiently large.

We make specific claims about one algorithm, presented in Table 3.1. The al-
gorithm, including the line-search rule, is presented in [3, 4]. The algorithm is not
necessarily practical, but it serves to show that rates of convergence results can be ob-
tained under very general assumptions. We now define the algorithm for the general
nonlinear program (1.1), though we later applied it to (3.2).

For fixed penalty parameter c∞, the problem (3.2) can be approached by the
above SQP algorithms without resulting in an infeasible QP, since the linearization
of the problem (3.2) is always feasible if [B1] and [B2] hold. If for a solution of (3.2)
we have that ζ = 0, then the x component of the solution of (3.2) is also a solution
of the original, unrelaxed nonlinear program (1.1).

The possibility exists, however, that c∞ may have to be increased indefinitely
before a solution of (1.1) is obtained. In the following theorem we discuss sufficient
conditions that ensure that the elastic mode relaxation (3.2) has x∗ as a component
of the solution for sufficiently large but finite penalty parameter.

Theorem 3.1. Assume that assumptions [B1] and [B2] hold for (1.1) and that,
at a solution x∗ of (1.1), we have that

• the Lagrange multiplier set of (1.1) is not empty,
• the quadratic growth condition (1.16) is satisfied at x∗, and
• the data of (1.1) are twice continuously differentiable.
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Then, for sufficiently large but finite value of the penalty parameter c∞ we have that
1. (x∗, 0) is a local minimum of (3.2) at which both (MFCQ) and the quadratic

growth condition (1.16) are satisfied.
2. (x∗, 0) is an isolated stationary point of (3.2).
3. If the algorithm in Table 3.1 is initialized sufficiently close to (x∗, 0) with

a sufficiently large penalty parameter c̃∞, then the sequence xk of iterates
converges R-linearly to x∗.

Proof We define the fully relaxed nonlinear program

minx,ζ f̃(x) + c∞ζ
subject to g̃i(x) ≤ ζ, i = 1, 2, . . . ,m,

−ζ ≤ h̃j(x) ≤ ζ, j = 1, 2, . . . , r
ζ ≥ 0.

(3.3)

If (x, ζ) is a feasible point of (3.3), it immediately follows from the definition
(1.14) of the L∞ penalty function, P̃∞(x), that ζ ≥ P̃∞(x). From (1.19), under the
assumptions stated in this Theorem, we have that there exists c̃∞ > 0 such that the
penalty function ψ∞(x) satisfies a quadratic growth condition at x∗. Choose now

c∞ = c̃∞ + 1.

Using (1.19), we obtain that, in a sufficiently small neighborhood of x∗, we must have
that:

f̃(x) + c̃∞ζ ≥ f̃(x) + c̃∞P̃∞(x) ≥ σ1 ||x− x∗||2 .

Whenever ζ ≤ 1
σ1

, we will have that σ1ζ
2 ≤ ζ. Therefore, in a sufficiently small

neighborhood of (x∗, 0), for all (x, ζ) feasible, we will have that:

f̃(x) + c∞ζ = f̃(x) + c̃∞ζ + ζ ≥ σ1

(
||x− x∗||2 + ζ2

)
.

Therefore, for our choice of c∞ we have that (3.3) satisfies the quadratic growth
condition for feasible points (x, ζ). Since any feasible point of (3.2) is feasible for
(3.3), if follows that (3.2) also satisfies quadratic growth at (x∗, 0) for every feasible
point (x, ζ). Since (3.2) clearly satisfies (MFCQ) everywhere from assumption [B2],
this is equivalent to the quadratic growth condition (1.16) holding for all (x, ζ) in a
neighborhood of (x∗, 0) [6, 7]. The proof of part 1 of the theorem is complete.

From the conclusion of part 1 we have that, since (MFCQ) and the quadratic
growth condition holds for (3.2) at (x∗, 0) this point must be isolated stationary
points of the respective nonlinear programs [1]. This concludes the proof of part 2.

Part 3 immediately follows from [1] since (3.2) and satisfies the quadratic growth
condition and (MFCQ) at (x∗, 0), Note that c̃∞ that enters the definition of ψ∞ used
in the algorithm is not the same as the one in the proof of part 1. It can be shown
that now we need c̃∞ ≥ c∞, once the latter is chosen. �

Discussion
• The same conclusions hold for an L1 elastic mode, such as the one in SNOPT

[24].
• Determining that a solution point is an isolated stationary point is an im-

portant issue in nonlinear programming [39, 14, 7]. In practical terms, it
means that a nonlinear programming algorithm with global convergence safe-
guards that does not leave a neighborhood of the solution point x∗ will in fact
converge to x∗. Example of such algorithms are provided in the references
[8, 9, 10, 13, 29, 17].
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• A difficulty with the definition of the algorithm is that the successful com-
pletion of the algorithm depends on the choice of the parameters c∞, c̃∞,
c1, that need to be sufficiently large but finite. Note that here c∞ and c̃∞
have different purposes: c∞ is needed to enforce ζ = 0 at a solution of (3.2),
whereas c̃∞ is the parameter of the merit function ψ̃∞(x) when the preceding
algorithm is applied to (3.2). The two parameters are related, but we need
at least c̃∞ > c∞ if we follow the proof of linear convergence from [1].
If (MFCQ) does not hold, the usual update [2, 4], that depends on the La-
grange multipliers, for the value of the penalty parameter cannot be used to
adapt c∞, if the original value is insufficient to result in ζ = 0. An adaptive
elastic mode can be implemented where if ζ is not sufficiently small, then the
penalty parameters are increased [24]. In Section 4 we show that such an
update works under certain conditions.

• Theorem 3.1, part 1 is close in aim to [40, Theorem 8]. Note, however, that
the cited result is rather an analysis tool since it involves a nonlinear program
whose setup requires the knowledge of the various active sets at the solution.
In particular, a nonlinear penalty term appears in the objective function and
it involves only the portion of the complementarity constraints coresponding
to the complementarity constraints with k ∈ K(x∗). Such information is not
available in an algorithmic framework and is not included in our approach.

We now apply Theorem 3.1 for the case of interest in this work, MPCC. The
following corollary is a simple restatement of Theorem 3.1 for (MPCC).

Corollary 3.2. Assume that (MPCC) satisfies the following conditions, at a
solution x∗:

• The Lagrange multiplier set of (MPCC) not empty. From Corollary 2.3,
(SMFCQ) holding for (TNLP) is a sufficient condition for this assumption
to hold.

• The quadratic growth condition (1.16) is satisfied at x∗.
• The data of (MPCC) are twice continuously differentiable.

Then the conclusions of Theorem 3.1 hold for (MPCC) and for (2.13).
Proof From Theorem 3.1 the conclusion immediately applies for (MPCC). For

(2.13) we apply Theorem 2.5 followed by Theorem 3.1 to obtain the conclusion. �
Consequently, when started sufficiently close to a solution and with a sufficiently

large penalty parameter, the algorithm will converge to that solution of (MPCC) or
(2.13) with a sufficiently large but finite c∞ and c̃∞ as soon as (MPCC) satisfies the
quadratic growth condition and has a nonempty Lagrange multiplier set at a solution
x∗. Since (SMFCQ) is a generic condition for (MPCC) and holds with probability 1
for instances of problems in the MPCC class [40] and the quadratic growth condition
is the weakest second-order sufficient condition, this convergence property is expected
to hold with probability 1.

3.1. Numerical Experiments. We conducted some numerical experiments on
MPCCs from the collection MacMPEC of Sven Leyffer. We used SNOPT [24], an
SQP package that implements an adaptive L1 elastic mode approach.

We considered three types of problem, all of which appear in [36]
1. Stackelberg games [36, Section 12.1], the gnash problems.
2. Generalized Nash complementarity points [36, Section 12.2], the gne problem,

an instance of the problem 12.34 in [36].
3. Optimum packaging problem. with the two-dimensional elliptic operator,

discretized on a grid of 8 × 8, 16 × 16, and 32 × 32 elements, which are the
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Table 3.2
Results obtained with SNOPT

Problem Var-Con-CC Value Status Feval Elastic,Why
gnash14 21-13-1 -0.17904 Optimal 27 Yes, Inf
gnash15 21-13-1 -354.699 Optimal 12 None
gnash16 21-13-1 -241.441 Optimal 7 None
gnash17 21-13-1 -90.7491 Optimal 9 None
gne 16-17-10 0 Optimal 10 Yes, Inf
pack-rig1-8 89-76-1 0.721818 Optimal 15 None
pack-rig1-16 401-326-1 0.742102 Optimal 21 None
pack-rig1-32 1697-1354-1 0.751564 Optimal 19 None

problems pack-rig followed by the discretization index in our table.

With the exception of gne, all the problems have the complementarity constraints
lumped together as one inequality, as in the formulation (2.13).

In the tables showing the results, we indicate the number of variables, constraints,
and complementarity constraints (“Var-Con-CC” in the first column), the final value
of the objective function, the number of function evaluations and the final status of
the run. SNOPT was run through NEOS server [35] at Argonne National Labora-
tory. We also indicate if and the reason for which the elastic mode was started. In
both examples for which the elastic mode was started, this happened because of an
infeasible subproblem, a fact that we indicated in the Elastic, Why column of Table
3.2 by an “Inf” symbol.

SNOPT solved all the problems presented in a reasonable number of iterations.
The fact that the elastic mode was initiated for SNOPT shows that the use of the
elastic mode considerably increases the robustness of sequential quadratic programs,
since otherwise SNOPT would have failed with an Infeasible diagnostic.

The fact that the MPCC problem class is substantially more difficult for nonlinear
program solvers, especially interior point solvers was validated by an extensive com-
putational investigation [16]. The elastic mode approach, like the one implemented by
SNOPT, is guaranteed to succeed for a finite penalty parameter under the conditions
discussed in this paper.

4. A superlinearily convergent algorithm for MPCC. In the following, we
present a superlinear convergence result for a special but widely-encountered type of
algorithm that uses exact second derivatives. Here we extend the work in [18], in
that we relax one assumption that was critical to the convergence proof: that the
iterates satisfy either the complementarity constraints or the feasibility conditions
for the unrelaxed quadratic program. We will show that in certain distinguished
cases, an adaptive elastic mode approach can be used to induce either feasibility or
complementarity for all iterates from which superlinear convergence follows from [18].

We assume that the complementary variables are the last components of the
unknown vector x. This is not a restrictive assumption: any MPCC can be recast in
such a form by using slack variables [18].

Consider the MPCC, that satisfies this assumption for the (2.13) form of (MPCC):
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(MPCCS)

minimize f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , nj

xk1 ≤ 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc∑nc

k=1 x1kx2k ≤ 0.

(4.1)

To simplify the subsequent notation, we assume that we are interested in local
convergence to a solution x∗ that satisfies:

x∗k1 = 0, k = 1, 2, . . . , nc, x∗k2 = 0, k = 1, 2, . . . , nd, x∗k2 < 0, k = nd+1, . . . , nc.
(4.2)

We also denote by x1 = (x11, x21, . . . , xnc1) and by x2 = (x12, x22, . . . , xnc2). With
this notation, the complementarity constraint becomes xT

1 x2 = 0, or, equivalently over
the feasible set of (MPCCS), xT

1 x2 ≤ 0.
Note that here we use a more specialized notation convention for the various

index sets, same as in Fletcher and al. [18], that is related to the objects defined in
(1.22)–(1.26), for which the notation is the same as in [40].

To prove our convergence results, we will invoke stronger conditions than in our
preceding sections. One such condition is MPEC-LICQ. We say that (MPCCS) sat-
isfies MPEC-LICQ at x∗, if the associated relaxed nonlinear program satisfies the
linear independence constraint qualification (LICQ) at x∗. Specifically, the condition
is expressed as:

MPEC-LICQ:
∇xgi(x∗)|i∈A(x∗) , ∇xhj(x∗)|j=1,2,...,ne

, ek1|k=1,2,...,nc
,

ek2|k=1,2,...,nd
, are linearly independent.

As opposed to the preceding sections, where a symbol e was used to denote the
vector of all ones, in this section we denote by e∗ ∈ Rn a vector that has zeroes
everywhere, except in the ∗ position, where it has a 1. We also denote by A(x∗) the
set of inequality constraints that is active:

A(x∗) = {i |i = 1, 2, . . . , ni, gi(x∗) = 0} .

For an arbitrary point x, we denote by:

A(x) = {i |i = 1, 2, . . . , ni, gi(x) ≥ 0} .

The associated (RNLP) is:

(RNLPS)

minimize f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , nj

xk1 ≤ 0 k = 1, 2, . . . , nd

xk2 ≤ 0 k = 1, 2, . . . , nd

xk1 = 0 k = nd+1, . . . , nc.

(4.3)

and, if x∗ is a local solution of (MPCCS) and MPEC-LICQ holds at x∗, then x∗ is a
Karush-Kuhn-Tucker point of (MPCCS) [40] as well as a local solution of (RNLPS). If
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MPEC-LICQ holds at x∗, we have that LICQ holds for (RNLPS) at x∗, and (RNLPS)
has a unique Lagrange multiplier at the solution: (ν̃, π̃, µ̃, η̃), that satisfies

ν̃ ≥ 0, µ̃k1 ≥ 0, µ̃k2 ≥ 0, k = 1, 2, . . . , nd

−∇xf(x∗) =
∑

i∈A(x∗) ν̃i∇xgi(x∗) +
∑ne

i=1∇xhj(x∗)π̃j

+
∑nd

k=1 (µ̃k1ek1 + µ̃k2ek2) +
∑nc

k=nd+1 µ̃k1ek1.

Here we use the natural implicit convention that ν̃i = 0 for i /∈ A(x∗), which we
will use at other points since this way we can treat the multiplier as a vector that
satisfies the complementarity constraints corresponding to the optimality conditions.
However, at times we will refer to ν̃ or similar quantities as to a vector with ni

components, especially in a solution stability context.
When the MPEC-LICQ assumption holds, we can define strong second-order

sufficient conditions.

(MPEC − SOSC)
sT∇2

xxL∗s > 0, ∀s 6= 0, s ∈ CRNLPS where
∇2

xxL∗ is the Hessian of the Lagrangian evaluated at (x∗, ν̃,
π̃, µ̃, η̃) and CRNLPS is the critical cone of (RNLPS) at x∗.

In the rest of this work we invoke the following assumptions,

[A1] f, g, h are twice continuously differentiable.
[A2] (MPCCS) satisfies MPEC-LICQ at the solution x∗.
[A3] (MPCCS) satisfies MPEC-SOSC at the solution x∗.
[A4] We have that µ̃k1 > 0 for k = 1, 2, . . . , nd.

Note that assumption [A4] is equivalent to the following assumption

[A4b] Either µ̃k1 > 0 or µ̃k2 > 0, for k = 1, 2, . . . , nd.

All one has to do to recover Assumption [A4] is to relabel appropriately the variables
that appear in complementary pairs. The form of assumption [A4] that we consider
here will allow us to simplify the notation considerably in our analysis.

At the point in our analysis where we invoke results from [18], we will replace
Assumption [A4] by a stronger assumption, as well as use an assumption about the
solution of the quadratic programs.

[A4a] ν̃i > 0, i ∈ A(x∗), π̃j 6= 0, j = 1, 2, . . . , ne, and µ̃k1 > 0, µ̃k2 > 0 for
k = 1, 2, . . . , nd.

[A5] When a QP is solved, the QP solver picks a linearly independent basis.

The assumptions [A1]–[A3] and [A5] are identical to the assumptions with the
same name used in [18]. Assumption [A4a] is identical to Assumption [A4] from [18].

Note, however, that at no point in this work we will invoke either Assumption
[A6] (that the current point satisfies the complementarity constraint xT

1 x2 = 0)
or Assumption [A7] (that all subproblems are feasible) from the same reference.
As we later show, for suitable values of the penalty parameter, the elastic mode
approach that we present here will induce one of the situations covered by these two
assumptions, without the need to assume it from the outset.

We now explore in more details the relationship between the Lagrange multipli-
ers and the second-order conditions of (RNLPS), (MPCCS), and of an elastic mode
relaxation of (MPCCS).
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In the following analysis, an important role will be played by the fact that we will
assume that the elastic mode implementation enforces the linear constraints exactly.
To that end, we assume that:

gi(x), i = 1, 2, . . . , li, hj(x), j = 1, 2, . . . , le are linear functions.

This is not a restrictive assumption: it is only a bookkeeping convention, since we
allow li and le to be 0. Also note, following from our assumption [A2], that MPEC-
LICQ holds at x∗, that we have that the assumptions [B1] and [B2] that were used
for the elastic mode defined in Section 3, will automatically hold here.

We now present an L∞ elastic mode approach. An L1 approach with similar
properties can be defined, exactly as used in SNOPT [24]. We use the L∞ approach
because of notational convenience: only one extra variable is needed. In this case, the
relaxed MPCC becomes:

(MPCC(c))

minimize f(x) + c∞ζ
subject to gi(x) ≤ 0 i = 1, 2, . . . , li

gi(x) ≤ ζ i = li + 1, . . . , ni

hj(x) = 0 j = 1, 2, . . . , le
−ζ ≤ hj(x) ≤ ζ j = le + 1, . . . , ne

xk1 ≤ 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc∑nc

k=1 xk1xk2 ≤ ζ
ζ ≥ 0.

When MPEC-LICQ holds, we can say more about the relationship between the
multipliers of (RNLPS), (MPCCS) and (MPCC(c)), than we did in Section 2. The
Lagrange multiplier set of (MPCCS) is not empty at x∗, following [40]. Therefore,
there must exist νi, i ∈ A(x∗); πj , j = 1, 2, . . . , ne; µk1, for k = 1, 2, . . . , nc; and µk2

for k = 1, 2, . . . , nd; and η ∈ R, that satisfy the KKT conditions for (MPCCS):

−∇xf(x∗) =
∑

i∈A(x∗) νi∇xgi(x∗) +
∑ne

j=1∇xhj(x∗)πj+
+

∑nd

k=1 (µk1ek1 + µk2ek2) +
∑nc

k=nd+1 µk1ek1 + η
∑nc

k=nd+1 x
∗
k2ek1,

as well as the inequality constraints νi ≥ 0, i ∈ A(x∗), µk1 ≥ 0, k = 1, 2, . . . , nc,
µk2 ≥ 0, k = 1, 2, . . . , nd and η ≥ 0. Here η is the Lagrange multiplier of the
complementarity constraint of (MPCCS) xT

1 x2 ≤ 0.
One immediate consequence is that (MPCCS) has a Lagrange multiplier that

is minimal (in terms of the 1 norm) [18]. We call that multiplier the fundamental
multiplier. Comparing the algebraic expression of its components in terms of the
components of the multiplier of (RNLPS) we obtain:

(FMC)

ν∗ = ν̃
π∗ = π̃
µ∗k1 = µ̃k1 ≥ 0, k = 1, 2, . . . , nd

µ∗k2 = µ̃k2 ≥ 0, k = 1, 2, . . . , nd

µ∗k1 = µ̃k1 − η∗x∗k2 ≥ 0, k = nd + 1, . . . , nc

η∗ = max
{

0,maxk=nd+1,...,nc

{
µ̃k1
x∗

k2

}}
≥ 0.

Since MPEC-LICQ holds, it is immediate that (MPCCS) has a degeneracy of
order 1 and thus its Lagrange multiplier set will have dimension at most 1. Therefore
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any multiplier of (MPCCS) must satisfy:

ν = ν∗

π = π∗

µk1 = µ̃∗k1 ≥ 0, k = 1, 2, . . . , nd

µk2 = µ̃∗k2 ≥ 0, k = 1, 2, . . . , nd

µk1 = µ̃∗k1 − axk2 ≥ 0, k = nd + 1, . . . , nc

η = η∗ + a ≥ 0,

(4.4)

where a ≥ 0.
We now write the KKT conditions for the relaxed problem (MPCC(c)) at (x∗, 0),

assuming that (x∗, 0) is a stationary point of (MPCC(c)), an assumption for which we
will later determine sufficient conditions for it to hold. We have that, for a Lagrange
multiplier of MPCC(c) with components ν̂i, i ∈ A(x∗); π̂j , for j = 1, 2, . . . , le; π̂+

j ,
associated with the inequality hj(x) ≤ ζ and π̂−j , associated with the inequality
−hj(x) ≤ ζ, j = le + 1, . . . , ne; µ̂k1 for k = 1, 2, . . . , nc; µ̂k2 for k = 1, 2, . . . , nd; and
η̂, associated with the complementarity constraint xT

1 x2 ≤ ζ; and θ̂ ≥ 0, associated
with the inequality ζ ≥ 0, we can write the KKT conditions:

−∇xf(x∗) =
∑

i∈A(x∗) ν̂i∇xgi(x∗) +
∑le

j=1∇xhj(x∗)π̂j

+
∑ne

j=le+1∇xhj(x∗)
(
π̂+

j − π̂−j
)

+
∑nd

k=1 (µ̂k1ek1 + µ̂k2ek2)
+

∑nc

k=nd+1 µ̂k1ek1 + η̂
∑nc

k=nd+1 (x∗k2ek1)
c∞ =

∑
i=li+1,...,ni, i∈A(x∗) ν̂i +

∑ne

j=le+1

(
π̂+

j + π̂−j
)

+ η̂ + θ̂.

If MPEC-LICQ holds, and (x∗, 0) is a stationary point of (MPCC(c)), then, using
(4.4), we obtained that any Lagrange multiplier of (MPCC(c)) must satisfy, in terms
of the components of the fundamental multiplier, the following relations:

ν̂i = ν∗i ≥ 0 i ∈ A(x∗)
π̂j = π∗j j = 1, 2, . . . , le,
π̂+

j = max{π∗j , 0}+ fj ≥ 0 j = le + 1, . . . , ne

π̂−j = max{−π∗j , 0}+ fj ≥ 0 j = le + 1, . . . , ne

µ̂k1 = µ∗k1 ≥ 0 k = 1, 2, . . . , nd

µ̂k2 = µ∗k2 ≥ 0 k = 1, 2, . . . , nd

µ̂k1 = µ∗k1 − axk2 ≥ 0 k = nd + 1, . . . , nc

η̂ = η∗ + a ≥ 0
θ̂ = c∞ −

∑ni

i=li+1,i∈A(x∗) ν̂
∗
i

−
∑ne

j=le+1

(
π̂+

j + π̂−j
)
− η̂ ≥ 0,

(4.5)

where a ≥ 0, and fj ≥ 0, for j = le + 1, . . . , ne. Here θ̂ is the Lagrange multiplier
of the constraint ζ ≥ 0 and the requirement θ̂ ≥ 0 results in a condition on the
value that c∞ must take for (x∗, 0) to be a stationary point of (MPCC(c)). We do
not add the complementarity constraints that appear when applying the first order
optimality condition, since these are automatically satisfied by our choice of active
set and multiplier components.

Rewriting θ̂ in terms of the fundamental multiplier (FMC), we obtain that:

θ̂ = c∞ −
ni∑

i=li+1,i∈A(x∗)

ν∗i −
ne∑

j=le+1

(
|π∗j |+ 2fj

)
− η∗ − a ≥ 0.(4.6)
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We denote by ν0 the following quantity, that is also defined in terms of the components
of the fundamental multiplier (FMC):

ν0 =
ni∑

i=li+1,i∈A(x∗)

ν∗i +
ne∑

j=le+1

|π∗j |+ η∗.(4.7)

We have the following Lemma.
Lemma 4.1. If c∞ ≥ ν0, where ν0 is given by (4.7), then
1. The point (x∗, 0) is a stationary point of (MPCC(c)).
2. The set of Lagrange multipliers of (MPCC(c)) is not empty and is defined by

(4.5), where a ≥ 0 and fj ≥ 0, j = le + 1, . . . , ne, also satisfy

c∞ − ν0 ≥
ne∑

j=le+1

(2fj) + a.(4.8)

Proof Since the values of the fundamental multiplier are fixed, and since a ≥ 0
and fj ≥ 0, j = le + 1, . . . , ne, the necessary and sufficient condition for (x∗, 0) to be
a stationary point of (MPCC(c)) is that θ̂ ≥ 0. From equations (4.6) and (4.7) this is
equivalent to

c∞ ≥ ν0,

which proves the first part of the claim.
By inspecting (4.5) we see that the set of Lagrange multipliers of (MPCC(c)) is

defined by fj ≥ 0, j = le + 1, . . . , ne and a ≥ 0 that satisfy the inequality θ̂ ≥ 0, that
is,

c∞ − ν0 ≥
ne∑

j=le+1

(2fj) + a.

The proof is complete. �
An immediate consequence is that, if c∞ = ν0, then the program (MPCC(c)) has

a unique multiplier! This is formally stated in the next result.

4.1. Second-order conditions. Lemma 4.2. Assume that (MPCCS) satis-
fies MPEC-LICQ and MPEC-SOSC. Assume that c∞ satisfies c∞ ≥ ν0. Then
(MPCC(c)) satisfies (MFCQ) and (RSOSC) at (x∗, 0). In addition, if c∞ = ν0,
then the Lagrange multiplier set of (MPCC(c)) at (x∗, 0) has a unique element.

Proof Consider one multiplier of (MPCC(c)), whose components are: ν̂i ≥ 0 for
i ∈ A(x∗); π̂j for j = 1, 2, . . . , le; π̂+

j ≥ 0 and π̂−j ≥ 0 for j = le + 1, . . . , ne; µ̂k1 ≥ 0
and µ̂k2 ≥ 0 for k = 1, 2, . . . , nd; µ̂k1 ≥ 0 for k = 1, 2, . . . , nd; η̂ ≥ 0 and θ̂ ≥ 0.

The Hessian of the Lagrangian at x∗ corresponding to this Lagrange Multiplier,
accounting for only the nonlinear terms, and using (FMC) and (4.5), is the following:

∇2
xxLMPCC(c)(x∗, 0) = ∇2

xxf(x∗) +
∑ne

j=le+1

(
π̂+

j ∇2
xxhj(x∗)− π̂−j ∇2

xxhj(x∗)
)

+
∑ni

i=li+1,i∈A(x∗) ν̂i∇2
xxg(x

∗) + η̂
∑nc

k=1

(
eT
k1
ek2 + eT

k2ek1

)
= ∇2

xxf(x∗) +
∑ne

j=le+1 π
∗
j∇2

xxhj(x∗)
+

∑ni

i=li+1,i∈A(x∗) ν
∗
i ∇2

xxg(x
∗) + η̂

∑nc

k=1

(
eT
k1
ek2 + eT

k2ek1

)
= ∇2

xxLRNLPS(x∗) + η̂
∑nc

k=1

(
eT
k1
ek2 + eT

k2ek1

)
.
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The Hessian of the Lagrangian of (MPCC(c)) should also be computed with respect to
ζ, but, since the contribution of ζ is linear both in the constraints and in the objective
function of (MPCC(c)), it follows that the Hessian of the Lagrangian is:

∇2
(x,ζ)(x,ζ)LMPCC(c)(x∗, 0) =

(
∇2

xxLMPCC(c)(x∗, 0) 0n×1

01×n 0

)
.

Note that, from Lemma 2.1, we have that CMPCCS = CRNLPS at x∗, where by C we
denote the critical cone of the respective nonlinear program. When c∞ ≥ ν0, since
x∗ is a stationary point for (MPCC) and (x∗, 0) is a stationary point for (MPCC(c))
we will have that CMPCC(c) = CMPCCS

⊕
{0}. Let now (u, 0) ∈ CMPCC(c) and thus

u ∈ CRNLPS . We have that:

(u, 0)T∇2
(x,ζ)(x,ζ)LMPCC(c)(u, 0) = uTLMPCC(c)u = uTLRNLPSu

+ 2η̂
∑nc

k=1(e
T
k1u)(e

T
k2u) ≥ uTLRNLPSu > 0,

where the last two inequalities follow, respectively, from the fact that, on the critical
cone of (RNLPS) we have (eT

k1u)(e
T
k2u) ≥ 0, for k = 1, 2, . . . , nd, and (eT

k1u)(e
T
k2u) = 0,

for k = nd + 1, . . . , nc, and η̂ ≥ 0, and, respectively, from the MPEC-SOSC assump-
tion. Since we obtained, for any multiplier of MPCC(c), that:

∀û ∈ CMPCC(c), û 6= 0 ⇒ ûT∇2
(x,ζ)(x,ζ)LMPCC(c)(x∗, 0)û > 0,

this means that Robinson’s condition (RSOSC) holds for (MPCC(c)) at (x∗, 0). Since
(MFCQ) clearly holds at (x∗, 0), the conclusion of the lemma follows. The uniqueness
of the multiplier for the case c∞ = ν0 follows from (4.8). �

4.2. The algorithm. We now consider the effect of applying SQP to MPCC in
either the original or the relaxed form. As matrix W of the QP we use the Hessian
of the Lagrangian, with the Lagrange multipliers computed at the previous step.

We define the following matrix Ŵ at the point x:

Ŵ =



∇2
xxf(x) +

∑ni

i=li+1 ν̂i∇2
xxgi(x)

+
∑ne

j=le+1

(
π̂+

j − π̂−j
)
∇2

xxhj(x)
+ η̂

∑nc

k=1

(
eT
k1ek2 + eT

k2ek1

)
.

or, alternatively,

∇2
xxf(x) +

∑ni

i=li+1 νi∇2
xxgi(x)

+
∑ne

j=le+1 πj∇2
xxhj(x)

+ η
∑nc

k=1

(
eT
k1ek2 + eT

k2ek1

)
,

where the first branch is followed in the quadratic program associated with the re-
laxation (QPMC(c)) was solved at the preceding iteration, and the second branch is
followed if the quadratic program associated with the unrelaxed problem ((QPX), to
be defined later) was solved at the preceding iteration.

Consider now the following quadratic program associated to (MPCC(c)) at the
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point (x, ζ).

(QPMC(c))



mind,dζ

1
2d

T Ŵd+∇xf(x)d+ c∞(ζ + dζ)

sbj. to

gi(x) +∇xgi(x)d ≤ 0 i = 1, 2, . . . , li
gi(x) +∇xgi(x)d ≤ ζ + dζ i = li + 1, . . . , ni

hj(x) +∇xhj(x)d = 0 j = 1, 2, . . . , le
hj(x) +∇xhj(xk)d ≤ ζ + dζ j = le+1, . . . , ne

−hj(x)−∇xhj(xk)d ≤ ζ + dζ j = le+1, . . . , ne

xk1 + dk1 ≤ 0 k = 1, 2, . . . , nc

xk2 + dk2 ≤ 0 k = 1, 2, . . . , nc

xT
1 d2 + xT

2 d1 + xT
1 x2 ≤ ζ + dζ

ζ + dζ ≥ 0.

To obtain results for the application of the algorithm to (MPCCS), we state and
prove the following stability result for general nonlinear programming.

Lemma 4.3. Consider the nonlinear program:

minx f̃(x)
subject to h̃j(x) = 0, j = 1, 2, . . . , r

g̃i(x) ≤ 0, i = 1, 2, . . . ,m.

Assume that it satisfies (MFCQ) and (RSOSC) at a solution x∗. We denote the
compact Lagrange multiplier set of this nonlinear program by Λ(x∗).

Consider the Quadratic Program:

mind ∇xf̃(x)d+ 1
2d

T W̃d
subject to g̃i(x) +∇xg̃i(x)d ≤ 0, i = 1, 2, . . . ,m

h̃j(x) +∇xh̃j(x)d = 0, j = 1, 2, . . . , r,

where W̃ = ∇2
xxf̃ +

∑ne

j=1 πj∇2
xxh̃j(x) +

∑ni

i=1 νi∇2
xxg̃i(x). Let d be a solution of this

quadratic program, and ν+ and π+ its Lagrange multipliers.
Then, there exist ε > 0 , c1 > 0, c2 > 0 such that dist ((ν, π); Λ(x∗)) ≤ ε and

dist (x;x∗) ≤ ε imply that
• (i) 1

c1
||x− x∗|| ≤ ||d|| ≤ c2 ||x− x∗||,

• (ii) dist ((ν+, π+); Λ(x∗)) ≤ c2 ||x− x∗||.
Here dist (·, ·) denotes the distance between two sets.

Proof The rightmost inequalities in both part (i) and (ii) are a consequence
of [45, Theorem A1]. In that reference, the inequality-only case is treated, but the
conclusion can be immediately extended for the case where there are also equality
constraints, that are linearly independent and that, together with the inequality con-
straints, satisfy (MFCQ). Since (MFCQ) holds, we have that:

g̃(x+ d) ≤ O(||d||2) ≤ O(||x− x∗||2)
h̃(x+ d) ≤ O(||d||2) ≤ O(||x− x∗||2).

This implies that the size of the infeasibility, I(x), where

I(x) = max
{

max
i=1,2,...,ni

{g̃+
i (x)}, max

j=1,2,...,ne

{|h̃j(x)|}
}
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satisfies I(x) = O(||d||). Using the result [45, Theorem A1], as well as ν+ ≥ 0
and the optimality conditions for the QP, we obtain that, since Wd = −∇xf̃

T (x) −
∇xg̃

T (x)ν+ −∇xh̃
T (x)π+, we have that:

Ω (||x− x∗||+ dist ((ν+, π+); Λ(x∗))) =
max

{∣∣∣∣∣∣∇xf̃(x) +∇xg̃(x)ν+ +∇xh̃(x)π+
∣∣∣∣∣∣ , I(x)

}
= O(||d||).

In turn, this implies that there exists a c1 > 0 such that ||x− x∗|| ≤ c1 ||d||, which
completes the proof. �

In the following, we will characterize the behavior of the solution of (QPMC(c)).
Towards that end, we considered the following multipliers. The multiplier

Π̂ =
(
ν̂, π̂, π̂+, π̂−, µ̂1, µ̂2, ν̂, θ̂

)
represents an approximation to the multiplier of the quadratic program (QPMC(c)).
The multiplier

Π̂+ =
(
ν̂+, π̂+, π̂++

, π̂−
+
, µ̂+

1 , µ̂
+
2 , ν̂

+, θ̂+
)

represents the multiplier of the quadratic program (QPMC(c)) computed at (x, ζ),
with the approximation to the Hessian matrix, Ŵ , computed with Π̂. Finally, the
multiplier

Π̂∗ =
(
ν̂∗, π̂∗, π̂+∗ , π̂−

∗
, µ̂∗1, µ̂

∗
2, ν̂

∗, θ̂∗
)

is a Lagrange multiplier of (MPCCS) at (x∗, 0).
Lemma 4.4. Consider the quadratic program (QPMC(c)), whose solution we

denote by (d, dζ). Assume that c∞ − ν0 = γ0 > 0. There exists ε > 0 such that, if

dist
(
Π̂,ΛMPCC(c)

)
< ε and dist ((x, ζ), (x∗, 0)) < ε,

then the following hold.
(i) If ζ + dζ > 0, then x+ d satisfies xk1 + dk1 = 0, for k = 1, 2, . . . , nc.
(ii) If xk1 = 0, for k = 1, 2, . . . , nc, then ζ + dζ = 0, and x + d also satisfies

xk1 + dk1 = 0, for k = 1, 2, . . . , nc.
Note A point that satisfies xk1 = 0, for k = 1, 2, . . . , nc, also satisfies the com-

plementarity constraints xT
1 x2 = 0.

Proof of part (i) Assume that ζ + dζ > 0. Using Lemma 4.2 and Lemma 4.3,
it follows from the expression of the Lagrange multipliers of (MPCC(c)) at (x∗, 0),
(4.5), that we must have that

µ̂+
k1 > 0 k = 1, 2, . . . , nd.(4.9)

The last result follows from Assumption [A4].
As a result we obtain from the optimality conditions of (QPMC(c)) that

xk1 + dk1 = 0, k = 1, 2, . . . , nd.(4.10)

In addition, since ζ + dζ > 0, not both bound constraints on hj(x) + ∇xhj(x)d
in (QPMC(c)) can be active at the same time. Using the optimality conditions of
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(QPMC(c)), this implies that π̂++

j π̂−
+

j = 0 for j = nle+1, . . . , ne. Assume that

π̂−
+

j = 0 for some nle+1 ≤ j ≤ ne.

Let now Π̂∗ be a Lagrange multiplier of (MPCC(c)) that satisfies
∣∣∣∣∣∣Π̂∗ − Π̂

∣∣∣∣∣∣ ≤
c2 (||x− x∗||+ |ζ − ζ∗|), where ζ∗ = 0. Such a multiplier must exist by Lemma 4.2
and Lemma 4.3. It then follows that 0 ≤ π̂−

∗

j ≤ c2 (||x− x∗||+ |ζ|). Define now
f∗j = π̂−

∗

j − max{−π∗j , 0}. From the preceding two equations we must have that
f∗j ≤ c2 (||x− x∗||+ ζ), whereas from (4.5) we must have that f∗j ≥ 0.

Applying this argument for any nle+1 ≤ j ≤ ne, we obtain that

ne∑
j=le+1

f∗j ≤ c2ne (||x− x∗||+ ζ) .

Finally, ζ + dζ > 0 implies, from the optimality conditions of (QPMC(c)), that
θ̂+ = 0, and thus 0 ≤ θ̂∗ ≤ c2 (||x− x∗||+ ζ).

Define now a∗ = η̂∗ − η∗. Using (4.5) and the fact that c∞ − ν0 = γ0 > 0, we
obtain that

a∗ = γ0 −
ne∑

j=le+1

2f∗j − θ̂∗ ≥ γ0 − (2ne + 1)c2 (||x− x∗||+ ζ) .

It therefore follows that, since γ0 > 0, if we choose ε > 0 sufficiently small we
have that a∗ ≥ γ0

2 . Using again (4.5), Lemmas 4.2 and 4.3, as well as our definition
of Π̂∗, we obtain that

µ̂+
k1 > 0, k = nd + 1, . . . , nc.

From the optimality conditions of (QPMC(c)) and (4.9), this implies that

xk1 + dk1 = 0, k = 1, 2, . . . , nc.

Thus the proof of the first part of the result is complete.
Proof of part (ii) Assume now that x satisfies xk1 = 0, k = 1, 2, . . . , nc. We

define

W = Ŵ − η̂

nc∑
k=1

(eT
k1ek2 + eT

k2ek1).

Consider the quadratic program

(QPR)


mind

1
2d

TWd+∇xf(x)d

sbj. to

gi(x) +∇xgi(x)d ≤ 0 i = 1, 2, . . . , ni

hj(x) +∇xhj(x)d = 0 j = 1, 2, . . . , ne

dk1 = 0 k = 1, 2, . . . , nc

xk2 + dk2 ≤ 0 k = 1, 2, . . . , nc

Using Assumption [A2], it is immediate that (QPR) satisfies LICQ in a neighborhood
of x = x∗ and d = 0. Using Lemma 4.2 and 4.3 it follows that as x → x∗, (QPR)
has a unique solution in the neighborhood of d = 0, and the unique corresponding
Lagrange multiplier Π̃R of (QPR) approaches the unique Lagrange multiplier Π̃ of
(RNLPS) at x = x∗.
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Also, since we have that dT Ŵd = dTWd for any d in the feasible set of (QPR),
it follows that the quadratic program that is obtained by substituting W by Ŵ has
the same solution and the same multiplier.

It then follows that d is also a stationary point of the following quadratic program

(QPX)



mind
1
2d

T Ŵd+∇xf(x)d

sbj. to

to gi(x) +∇xgi(x)d ≤ 0 i = 1, 2, . . . , ni

hj(x) +∇xhj(x)d = 0 j = 1, 2, . . . , ne

xk1 + dk1 ≤ 0 k = 1, 2, . . . , nc

xk2 + dk2 ≤ 0 k = 1, 2, . . . , nc

xT
1 d2 + xT

2 d1 + xT
1 x2 ≤ 0.

with a multiplier Π that is constructed from the multiplier Π̃R by the same procedure
that we used to construct the fundamental multiplier (FMC) from Π̃. It therefore
follows that Π = (ν, π, µk1, µk2, η) approaches the fundamental multiplier defined in
(FMC) as x approaches x∗.

It then follows that we can construct from Π a Lagrange multiplier Π̂ for
(QPMC(c)) by the same relation that we used in (4.5) to construct all Lagrange mul-
tipliers of (MPCC(c)) starting from the fundamental multiplier of (MPCCS), where
in the same procedure we take a = 0.

The only relation in (4.5) that is not immediately true is θ̂ ≥ 0. However, since
we start from a multiplier that is close to the fundamental multiplier, since we take
a = 0, and since we assume that c∞ − ν0 = γ0 > 0, it is clear that θ̂ approaches γ0

and is therefore positive when ε > 0 is sufficiently small.
It then follows that we can choose dζ = −ζ and then (d, dζ) is a stationary point

of (QPMC(c)). However, from Lemma 4.2, it follows from [39] that the solution of
(QPMC(c)) in a neighborhood of (0, 0) is local unique. Therefore (d, dζ) is a solution
of (QPMC(c)). Since, following the definition of (QPR), for that solution we will have
that xk1 + dk1 = 0, k = 1, 2, . . . , nc as well as ζ + dζ = 0, the conclusion follows. �

4.3. A superlinearily convergent algorithm. We now state our algorithm
for general nonlinear programming, and then show that, under certain conditions, it
will converge superlinearily when applied to (MPCCS). The problem to be solved is
the following:

minx f̃(x)
sbj. to g̃i(x) ≤ 0, i = 1, 2, . . . ,m

h̃j(x) = 0, j = 1, 2, . . . , r.
(4.11)

We assume that g̃i(x), i = 1, 2, . . . , li and h̃j(x), j = 1, 2, . . . , le, are linear constraints
that do not get relaxed in an elastic mode approach.

In the algorithm that we describe we use one of the two following quadratic
programs:

(QP )
mind ∇xf̃(x)d+ 1

2d
T W̃d

sbj. to g̃i(x)d+∇xg̃i(x)T d ≤ 0, i = 1, 2, . . . ,m
h̃j(x)d+∇xh̃j(x)T d = 0, j = 1, 2, . . . , r



28 M. ANITESCU

x0 = x, c∞ = c0, k = 0.
NLP: Solve (QP).
If
∑m

i=li+1 ν
q
i +

∑r
j=le+1 |π

q
j | ≤ cµ and (QP) is feasible

xq+1 = xq + dq, q = q + 1, return to NLP.
Else

NLPC: solve (QPC).
xq+1 = xq + dq, ζq+1 = ζq + δq

ζ , q = q + 1.

If
√
||dq||+

∣∣∣∣∣∣δq
ζ

∣∣∣∣∣∣ ≤ ζn,

c∞ = c∞cγ , q = q + 1 return to NLPC.
End If

End If

Table 4.1
The elastic mode algorithm

(QPC)

mind,dζ
∇xf̃(x)d+ 1

2d
T W̃d + c∞(ζ + dζ)

sbj. to g̃i(x)d+∇xg̃i(x)d ≤ 0, i = 1, 2, . . . , li
g̃i(x)d+∇xg̃i(x)d ≤ ζ + dζ , i = li + 1, . . . ,m

h̃j(x)T d+∇xh̃j(x)d = 0, j = 1, 2, . . . , le
−ζ − dζ ≤ h̃j(x)T d+∇xh̃j(x)d ≤ ζ + dζ , j = le + 1, . . . , r

ζ + dζ ≥ 0.

When (QP) is solved, we obtain a direction d and Lagrange multipliers νi, i =
1, 2, . . . , ni and πj , for j = 1, 2, . . . , ne. When (QPC) is solved, we obtain Lagrange
multipliers νi, i = 1, 2, . . . , ni; πj , j = 1, 2, . . . , li; π+

j and π−j , j = le + 1, . . . , nj ; and
θ. We define the matrix W̃ to be used to in the next quadratic program, which is
either (QP) or (QPC) as follows.

W̃ =


∇2

xxf̃(x) +
∑r

i=li+1 νi∇2
xxg̃i(x) +

∑m
j=le+1 πj∇2

xxh̃j(x),
if (QP) was last solved

∇2
xxf̃(x) +

∑r
i=li+1 νi∇2

xxg̃i(x) +
∑m

j=le+1

(
π+

j − π−j
)
∇2

xxh̃j(x),
if (QPC) was last solved.

We now define our algorithm in Table 4.1. The algorithm depends upon the
parameters cµ, cγ > 1, c0.

The (QP) subproblem of this algorithm is the same subproblem as in the algorithm
by [19], minus the trust-region constraint that is imposed for globalization. The (QPC)
subproblem is the natural extension of (QP) when using the elastic mode. The elastic
mode strategy used here is identical to the one used in SNOPT [24], except that we
use here the L∞ function.

Note that once the subproblem (QPC) is solved the algorithm never solves the
problem (QP) again. So we either solve (QP) till convergence or (QPC) till conver-
gence.

We now analyze the effect of applying this algorithm to (MPCC). For this case,
the (QP) subproblem becomes (QPX), whereas the (QPC) subproblem becomes
(QPMC(c)).
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Theorem 4.5. Assume that Assumptions [A1]–[A3], [A4a] and [A5] hold near
a solution x∗ of (MPCCS). Assume that the point xq0 is sufficiently close to x∗ and
either

(i) The elastic mode is never invoked, and the algorithm uses at q0, for the pur-
pose of constructing the matrix W̃ , an estimate of the Lagrange multiplier
that is sufficiently close to a multiplier of (MPCCS).

(ii) The elastic mode is invoked at q0 with c∞ ≥ ν0 and at all subsequent iterates,
and the algorithm uses at q0, for the purpose of constructing the matrix W̃ ,
an estimate of the Lagrange multiplier that is sufficiently close to a multiplier
of (MPCC(c)), and a ζq0 that is sufficiently close to 0.

Then xq converges to x∗ superlinearily in case (i) and (xq, ζq) converges to (x∗, 0)
superlinearily in case (ii).

Proof For case (i) to hold, we must have that the test involving the 1 norm of
the nonlinear multipliers is always satisfied. Therefore, for all iteration indices q, we
have that the following inequality holds:

ni∑
i=li+1

νq
i +

ne∑
j=le+1

|πq
j |+ ηq ≤ cµ,

where the left hand side is composed of multipliers of (QPX). Since we are sufficiently
close to x∗, this must imply that cµ ≥ ν0. In the latter case, we will have that a
solution of (QPX) can be completed to a solution of (QPMC(c)) with ζ = 0 and
ζ + δζ = 0, and c∞ = cµ ≥ ν0. We get therefore treat the case (i) as a special case of
case (ii) to which we now confine our attention. We have the following cases.

• Case 1 c∞ = ν0. In this case, following Lemma 4.2, (MPCC(c)) has a unique
multiplier, and the result from [5] applies to give superlinear convergence of
(xq, ζq) to (x∗, 0).

• Case 2 c∞ > ν0 and ζq + δζq = 0 for all q ≥ q0. Then the solution obtained
of (QPMC(c)) is a also a solution of (QPX) which is feasible for all x = xq.
The result claimed follows from [18].

• Case 3 c∞ > ν0 and ζq0 + δζq0 > 0. Then using Lemma 4.4, part (i) it
follows that the point xq0+1 = xq0 +dq0 , where dq0 are the components of the
solution of the quadratic program (QPMC(c)) corresponding to x at (xq, ζq),
satisfies the complementarity constraints and that xq0+1

k1 = 0, k = 1, 2, . . . , nc.
Using now Lemma 4.4, part (ii), for all q ≥ q0 + 1, we obtain that xq satisfies
xq

k1 = 0, k = 1, 2, . . . , nc for q ≥ q0 + 1 and that ζq = 0 for q ≥ q0 + 2. The
superlinear convergence result again follows from [18].

The proof is complete. �
We have the following observations:
1. We do not prove here the more desirable result that if xq is sufficiently close

to x∗ we obtain superlinear convergence to x∗ or of (xq, ζq) to (x∗, 0). The
difficulty is that, unless we have an estimate for ν0, the subsequent iterates
may find themselves far away from x∗ once the elastic mode is entered. In
effect, if the penalty parameter c∞ is too small, the iterates may even be
unbounded, even if the objective function is bounded on the feasible set. Such
an adverse outcome can be prevented only by a global convergence result that
will be the result of future research.

2. From Lemmas 4.2 and 4.3 we have that ||ζq|| = O(||dq|| + |dq
ζ |), so the c∞

update rule from Table 4.1 will not be triggered, for xq sufficiently close to
x∗ and for c∞ > ν0. Therefore, the update rule does not interfere



30 M. ANITESCU

with super linear convergence. On the other hand, it is also clear that, if
c∞ < ν0, then ζq > 0 and the rule will eventually be triggered assuming that
the iterates approach a stationary point. The test we use here is important
because we do not spend an infinite amount of steps with an inappropriate c∞.
The complete study of an appropriate rule should also involve global conver-
gence issues, since one possible outcome of the penalty parameter adaptation
rule is to obtain unbounded iterates.

3. The appropriate value of cµ is ν0 (or a slightly larger value) which of course
cannot be determined unless we specifically use the MPCC structure. A gen-
eral NLP approach cannot be guaranteed to succeed in determining the ap-
propriate value for c∞ through cµ by looking at the multipliers of (QPMC(c))
alone, since the Lagrange multiplier set of (MPCCS) is unbounded, whereas
such rules are based on the assumption of boundedness of the Lagrange mul-
tiplier set at the solution x∗ [2]. Whether cµ can be adaptively defined is a
matter for future research. For NLP implementations, a user-defined value
for cµ is considered to be an acceptable approach [24].

4. Note that the only meaningful difference between the proofs outlined here
and the ones in [18], once the Lemma 4.4 has been established, is the one
involve in the case where c∞ = ν0, for which the well-known result from [5]
has been invoked. Our contribution to this class of super linear convergent
results has been essentially to show that, for the case c∞ > ν0, the elastic
mode approach, as presented in Table 4.1, will force the algorithm to choose
points that are either always feasible or always satisfy the complementarity
constraints and in so doing we do not have to apriori assume that this holds,
as it was done in [18].

A similar result holds for the case where we use only Assumption [A4], rather
than its stronger version [A4a] that is used in [18]. The only weakening we have to do
of the result is that we have to assume convergence of the sequences from the outset,
rather than assuming only that the sequences find themselves in a sufficiently small
neighborhood of the respective limit points. Following techniques from [45, 44], this
assumption could probably be dropped at the cost of substantially complicating the
analysis.

Theorem 4.6. Assume that Assumptions [A1]–[A4], hold near a solution x∗ of
(MPCCS). Assume that either

(i) The elastic mode is never invoked, and the algorithm uses at q0, for the pur-
pose of constructing the matrix W̃ , an estimate of the Lagrange multiplier
that is sufficiently close to a multiplier of (MPCCS) and that xq → x∗.

(ii) The elastic mode is invoked at q0 with c∞ ≥ ν0 and at all subsequent iterates,
and the algorithm uses at q0, for the purpose of constructing the matrix W̃ ,
an estimate of the Lagrange multiplier that is sufficiently close to a multiplier
of (MPCC(c)), and a ζq0 that is sufficiently close to 0, and that (xq, ζq) →
(x∗, 0).

Then xq converges to x∗ superlinearily in case (i) and (xq, ζq) converges to (x∗, 0)
superlinearily in case (ii).

Proof Much as in the proof of Theorem 4.5, the proof of the case (i) can be
reduced to the proof of the case (ii). Also, the conclusion of the case (ii) where
c∞ = ν0 follows by the same argument as in Theorem 4.5. So we concentrate on
proving (ii) for the case c∞ − ν0 = γ0 > 0.

We will complete the proof by considering the following cases.
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Case 1. For all iterations, we have that ζq + dq
ζ = 0, but the relation xq

k1 = 0,
k = 1, 2, . . . , nc does not hold at any iteration q.

Then on one hand, from Assumption [A4] and Lemmas 4.2 and 4.3 we must have
that µ̂q+1

k1 > 0 for k = 1, 2, . . . , nd. Assume that, on the other hand, we have that
µ̂q+1

k1 > 0 for some iteration index q and all k, nd + 1 ≤ k ≤ nc. Then, from the
optimality conditions of (QPMC(c)) we must have that xq+1

k1 = 0, k = 1, 2, . . . , nc.
This is a contradiction with the assumption at the beginning of this case.

So there must be a k such that µ̂q+1
k1 = 0. Without loss of generality for the

following argument, we assume that

µ̂q+1
nc,1 = 0(4.12)

Take now j, nli + 1 ≤ j ≤ ni. Since we have that ζq + dq
ζ = 0, it follows that

the double inequality constraint −ζ − dζ ≤ hj + ∇xhj(x)d ≤ ζ + dζ of (QPMC(c))
will have both sides active, with corresponding Lagrange multipliers π̂−

q+1

j and π̂+q+1

j .

An immediate consequence of Assumption [A2] is that π̂−
q+1

j − min{π̂−
q+1

j , π̂+q+1

j }
and π̂+q+1

j −min{π̂−
q+1

j , π̂+q+1

j } are also Lagrange multipliers of the same respective
constraints. Note that the expression of Ŵ at the next iteration q+1 does not change
when using the new multipliers. We can therefore assume without loss of generality
that

π̂−
q+1

j π̂+q+1

j = 0.(4.13)

Let now Π̂∗ be the Lagrange multiplier of (MPCC(c)) that is closest to

Π̂q+1 =
(
ν̂q+1, π̂q+1, π̂−

q+1
, π̂+q+1

, µ̂+q+1

1 , µ̂+q+1

2 , η̂q+1, θ̂q+1
)
.

Define now f∗j , j = nd + 1, . . . , nc, and a∗ by subtracting the respective components
of the fundamental multiplier from the components of Π̂∗, as in (4.5).

It then follows from Lemma (4.2) and Lemma (4.3) that

|µ̂q+1
nc,1 − µ̂∗nc,1| ≤ c2 (||xq − x∗||+ ζq) .

From equations (4.12) and (4.5) it then follows that

0 ≤ −a∗x∗nc2 ≤ µ̂∗nc,1 ≤ c2 (||xq − x∗||+ ζq) ,

which, in turn, implies that

0 ≤ a∗ ≤ c2
−x∗nc2

(||xq − x∗||+ ζq) .

By a similar rationale, we get that (4.13) implies that, for any j such that nle +1 ≤
j ≤ nc we have that

f∗j ≤ c2 (||xq − x∗||+ ζq) .

Using now (4.5) we get that

Π̂q+1 → (Π∗, γ0) ,
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where Π∗ is the fundamental multiplier whose components are defined in (FMC).
Since the sequence of Lagrange multipliers is convergent, it follows from Lemma

4.2 by an argument similar to the one in [5], that is also discussed in [45, 44], that
the sequence (xq, ζq) is superlinearily convergent to (x∗, ζ∗). The proof of this case is
complete.

Case 2 We have that ζq + dq
ζ = 0, as well as xq

k1 = 0, for 1 ≤ k ≤ nc at iteration
q = q0. Then, from Lemma 4.4 we have that ζq + dq

ζ = 0, as well as xq
k1 = 0, for

1 ≤ k ≤ nc for all iterations q ≥ q0+1. It then follows that the solution of (QMPC(c))
in the x component coincides with the solution of (QPR), since on the feasible set of
(QPR) we have that dTWd = dT W̃d with the notations of Lemma 4.4. Subsequently,
the steps produced by the algorithm in the x component are identical to the steps
produced by the algorithm applied to the nonlinear program

minimize f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , nj

xk1 = 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc

Since, from Assumptions [A2] and [A3] this program satisfies LICQ and SOSC at
x∗, the fact that xq converges superlinearily to x∗ follows from [12, 38]. The result
follows since ζq = 0.

Case 3 We have that ζq + dq
ζ > 0, at iteration q = q0. It then follows from

Lemma 4.4 that xq+1
k,1 = 0, for 1 ≤ k ≤ nc. Using Lemma 4.4 again, we obtain that

ζq + dq
ζ = 0, as well as xq

k1 = 0, for 1 ≤ k ≤ nc for all iterations q ≥ q0 + 2. The
conclusion follows from the preceding case. The proof is then complete. �
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5. Response to the comments of the referees. .

5.1. Referee 1. The section 4 was vastly changed. In particular, its size has
been reduced by more than 2 pages even though a result that uses weaker assumptions
about the multipliers than [18] was added. This has been done by a change of notation
(see assumption about signs of multipliers at the beginning of Section 4) and a change
in the proof strategy, that revolves around Lemma 4.4. I believe the Section 4 is much
more readable, which is what the referee requested.

5.2. Referee 2. .
1.1-1.2 The origin of the choices in question is now pointed out to [3, 4].

1.3 A model update is present in the algorithm defined in Section 4. The fact
that it does not interfere with superlinear convergence is also discussed.

1.4 Note that the algorithm in Table 3.1 was added following the comment of
the first referee about defining a specific algorithm about which the linear
convergence claim is made.

1.5 Done.
1.6 – The respective phrase was corrected to read “... elastic mode, such as the

one in SNOPT ...”. Note that we regard the elastic mode as one way to
relax the problem independent of what is used to solve the subproblem.
In a paper that is the offshoot of the former global convergence part
of the first version we use interior point algorithms to solve the relaxed
problem.

– The point is well taken. The respective statement was deleted.
– Note that the respective statement refers to an aposteriori observation,

rather than an apriori assumption.
2.1 The connection and no loss of generality statement of the 2 forms is described

in the second paragraph of Section 4.
2.2 Note that the algorithm in Table 3.1 was simply one for which we proved

linear convergence under weak second-order assumptions. They both still use
elastic mode.

2.3 The statement of MPEC-SOSC was corected to not include MPEC-LICQ.
2.4 I thank for the referee for that observation, for I now realize that the point

was not clearly made. I have added Lemma 4.1 to make the point that such
a c∞ can, in effect, be chosen.

2.5 I do not disagree with the referee, but note that the aim of our paper is quite
different. We are trying to prove superlinear convergence without explicitly
dropping the complementarity constraint, which is a modeling decision. Pur-
suant to the requests of the first referee at the first round of reviews, I have
tried to define a black-box NLP elastic mode and show that it results in super-
linear convergence when applied to MPCC. Dropping the complementarity
constraint cannot be a part of the black box approach since it contains an
inner modeling decision that is aware of the MPCC structure. I agree that
keeping the constraint is what makes the whole analysis more difficult, as it
can also be seen in [18].

3.1 I have done my best to unify it.
3.2 Note that a minimizer of the infeasibility includes no information about the

objective function, which is included in that definition through the critical
cone over which the second-order condition is defined.

3.3 Note that the conditions in those references are substantially weaker than
Robinson’s conditions which most references tend to consider the standard
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ones.
3.4 The point is well-taken. This is now discussed in the paragraph following the

one where (MPCC) is defined.
3.5 The issue is discussed in the paragraph following the definition of (RNLP).
3.6 The convention about gradients is discussed in the new second paragraph of

Subsection 1.2.
3.7 The issue is discussed following (2.14)–(2.15).
3.8 The distinction is important for our superlinear convergence result. For our

analysis, it is essential not to relax the variables that enter the complemen-
tarity constraints.


